
Introduction

During over 200 years of the existence of calorimetry

a great number of instruments have been constructed

for determination of various heat effects. Along with

the development of this measurement technique, also

a number of mathematical models of calorimeters

have appeared. They consist in presenting, in the form

of an equation based on distinguished parameters of

the system, of the dependence between a quantity

measured in the calorimeter (e.g. temperature) and a

quantity which is the aim of the measurement (heat

power, total thermal effect). The latter form a basis

for calculation of the generated heat effects. Mathe-

matical models have been constructed to analyze the

course of heat effects in time.

One of the most frequently used methods of

analysis of heat effects occurring in the calorimeters

is the thermal-electrical analogy method [1–10] based

on similarity of the equations describing the heat con-

duction and electrical conduction. Such a study gen-

erally involves both the use of circuit theory and the

principle of dimensional similarity. In order to ana-

lyze the course of heat effects (according to this

model) in the calorimetric system it is necessary to

determine the number of elements, their arrangement

and the existing mutual interactions. In this way the

so-called Beuken model [11] is constructed. Conse-

quently, in this way the suitable system of heat

balance equations was formulated.

During the last years the foundations were estab-

lished for the use in calorimetry of another analogy

method [12], namely the thermal-dynamic analogy

method based on introduction into the heat effect

analysis of the terms, notions and mathematical pro-

cedures used in the steering theory [13]. By using this

method we obtain considerable information about cal-

orimeters as dynamic objects. It also offers a possibil-

ity of analyzing the course of heat effects in time.

This work presents the fundamentals and way of

applications of thermal-dynamic analogy in calorime-

try, especially for analyzing the heat effects occurring

in closed (‘batch’) calorimeters.

Fundamentals of thermal-dynamic analogy
method

From the point of view of the heat transfer theory a cal-

orimeter can be treated as a physical object with active

sources of heat that act in it. The basis of description of

thermal phenomena is the Fourier law and the Fou-

rier-Kirchhoff equation. The mathematical models of

calorimeters that are created are the result of detailed,

usually very simplified, forms of this equation.

In the steering theory the calorimeter is treated as

a dynamic object in which the generated heat effects

characterized by the input signal {input signals, func-

tions y1(t), y2(t), …yn(t)} can be transformed to the

quantity measured directly in the calorimeter, e.g.

temperature {output signals, functions x1(t),
x2(t)…xn(t)}. The relationship between input and out-

put functions is accepted as the mathematical model

of the calorimeter. To solve an adequate equation ex-

pressing the model the Laplace or Fourier transforms

are used, whereas the transmittance is defined as a

quotient of the transforms of output and input func-

tions. In the transmittance the dynamic properties are

encoded. The form of transmittance depends on the

type of the dynamic object studied. Let us distinguish
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the following types of dynamic objects called open

dynamic objects [13]:

• proportional, when the input function y(t) is pro-

portional to the output function x(t):

kx(t) = y(t) (1)

where: k – proportionality coefficient, whereas

Laplace transmittance has the form

H s
k

( ) = 1
(2)

• integrating, when the input function is proportional

to the derivative of the output function

C
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first order inertial, when the input function is the linear

combination of the output function and its derivative
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whereas
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Let us ascribe the above-mentioned models of

open dynamic objects to the groups of calorimeters

distinguished in the classification, assuming the heat

balance equation of a simple body (Eq. (7)) as a gen-

eral mathematical model of calorimeters,
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in which C is heat capacity, G is a heat loss coeffi-

cient, T is the temperature of the proper calorimeter

(calorimetric vessel with contents), T0 is the tempera-

ture of the shield which is a part that is functionally

distinct from the proper calorimeter, P(t) is heat

power in time.

Equation (7) found a wide application in calo-

rimetry and is well-known in the form of Tian-Calvet

equation.

The first left-hand side term of Eq. (7) describes

the quantity of heat accumulated throughout the time

interval dt in the calorimetric vessel and constitutes a

mathematical model applied in adiabatic calorimetry.

It corresponds to the form of Eq. (3) describing the

dynamic properties of integrating objects.

The second term of Eq. (7) describes the amount

of heat exchanged between the calorimetric vessel

and the surroundings. This term constitutes a mathe-

matical model applied in the flux method. In this

method it is assumed that the quantity of heat accu-

mulated in the calorimetric vessel is extremely small

and can be neglected. This term of Eq. (7) corre-

sponds to the form of Eq. (1) describing the dynamic

properties of proportional objects.

A mathematical description of the calorimeter

expressing the first and second left-hand side terms of

Eq. (7) corresponds to calorimeters in which the gen-

erated heat effect is partly accumulated in the proper

calorimeter and is partly transmitted to the shield.

One can easily notice that Eq. (7) has the same form

as Eq. (5) describing the dynamic properties of

inertial objects.

As can be noticed, the function y(t) in

Eqs (1), (3), (5) corresponds to the function P(t) in

Eq. (7), which is linear, ordinary, differential equa-

tion. For this kind of equations the principle of super-

position can be applied. According to this principle

the temperature response T(t) of a calorimeter to the

several heat powers generated P1(t), P2(t) …. Pi(t) is

equal to the sum of T1(t), T2(t) …. Ti(t) temperature re-

sponses. It is independent on the place of generation

of heat effect. That means that function P(t) in Eq. (7)

can express heat power (or heat powers) generated in

calorimetric cell, or on calorimetric shield, or both.

The P(t) function can also be equal to the sum of:

1) the heat power generated by transformation stud-

ied, 2) the heat power involved in the calorimetric

shield, causing the conditions of the process to be dif-

ferent from isothermal. In this last case the particular

forms of function P(t) (and similarly y(t)) describe the

heat processes occurring the calorimeters of variable

temperature of calorimetric shield e.g. scanning calo-

rimeters.

Thereby it was demonstrated that open dynamic

objects described the dynamic properties of consider-

able groups of calorimeters.

Of course not only the properties of open dy-

namic objects can be used in the consideration of dy-

namic properties of the calorimeters. For example, in

the case of compensation calorimeters in P(t) func-

tion, the compensating heat power causing that the

difference of temperature between the calorimetric

vessel is zero or constant in time, should be taken into

account. In this case the dynamic objects in feed-back

system are considered.

For the calorimeters in which external mass is in-

troduced to the calorimetric vessel during the calori-

metric determination, the heat balance equation is dif-

ferent from Eq. (7). Also, the dynamic properties for

these systems are unlike those described above. This

does not constitute an obstacle in using the ther-

mal-dynamic analogy method. The terms, notions and

mathematical procedures used in the steering theory
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and consequently in thermal-dynamic analogy

method can be undoubtedly used for these purposes.

Dynamics equation

In calculations performed with the use of the ther-

mal-dynamic analogy method very often the equa-

tions expressing the mathematical model of calorime-

ter are given in temperature dimension. These

equations are called dynamic equations. In the case of

Eq. (7) for this purpose one should divide both sides

of this equation by G and put

τ = = =C

G
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where τ is a time constant, a decisive parameter for

characterizing inertial properties of the calorimeter.

Taking into account relations (8) in Eq. (7) it becomes
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The use of the Laplace transformation for Eq. (9)
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gives the solution of Eq. (9) in the complex domain

(τs + 1)T(s) – τT(0) – T0(s) = F(s) (11)

which can be presented in the form
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Equation (12) is called the subsidiary solution of

Eq. (9), where T(s) is the response transform of output

function, F(s) and T0(s) are driving forces, 1/(τs+1) is

the characteristic function of the object. Function

1/(τs+1) characterizes the dynamic properties of iner-

tial objects. The first and third right-hand side terms

of Eq. (12) being the function of initial conditions are

the transforms of a transient solution. The second

term, which is independent of initial conditions, rep-

resents the transforms of a steady-state solution.

The inverse Laplace’s function defines function

T(t) characterizing the course of temperature changes

of the calorimeter.

Models of calorimeters

The heat balance equation of a simple body is the ba-

sis of most methods of determining heat effects. How-

ever, in order to analyze the heat effects proceeding in

calorimeters we have to use some more complicated

models. The mathematical model expressed by

Eq. (7) as it was shown in [12] is too simplified. And

so: in 1941 King and Grover [14] and then Jessup [15]

concluded that when using the mathematical model

based on Eq. (7) the evaluated heat capacity of a calo-

rimetric bomb as the sum of heat capacities of particu-

lar parts of the calorimeter was not equal to the exper-

imentally determined heat capacity of the system. In

calculations of heat capacity of a calorimetric bomb a

dependence called the energetic equivalent was used.

This dependence was introduced as a result of distin-

guishing in the calorimeter of two parts (domains)

and of working out a mathematical model expressed

by the heat balance equation of the second degree.

Calvet and Prat [16] summarizing the works done in

the Centre de Microcalorimétrie CNRS stated that the

course of temperature of the short heat effect pro-

cesses investigated in the Calvet microcalorimeter is

multiexponential. Madejski et al. [17], demonstrated

that when applying the heat equation of a simple body

the relation of heat capacity to the time of generation

of heat power was obtained. This effect was named

the ‘apparent heat capacity’. In all these cases there is

more than one domain distinguished in the calorime-

ter. It can be assumed that each of those domains is

described by the heat balance equation of a simple

body. They were the subject of works applying the

thermal-dynamic analogy method. In many cases it is

sufficient to analyze a model of two or three domains.

Thus for instance the basis for consideration was a

calorimeter (Fig. 1) in which the following parts were

distinguished: a calorimetric vessel containing a sub-

stance as one domain; an internal shield containing

the vessel or thermopile junctions fixed to the vessel

as the second domain; the whole device placed in an

external shield, which is taken as the environment of a

temperature T0. In such a case the following parame-

ters were distinguished: the heat capacity C2 of the ca-

lorimetric vessel with its contents; the temperature of
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Fig. 1 Calorimeter as a system of two bodies of concentric

configuration



this body T2(t); heat capacity of internal shield C1 and

temperature T1. It is assumed that in the calorimetric

vessel and in the internal shield there can exist heat

sources, expressed by Q2 and Q1, respectively. The

heat exchange between the calorimetric vessel and the

internal shield of temperature T0(t) is characterized by

the heat loss coefficient G12, whereas the heat ex-

change between the internal shield and external

shield – by the heat loss coefficient G01. The per-

formed calculations resulted in a dependence show-

ing in what conditions it is necessary to use the ener-

getic equivalent of the calorimeter instead of the

method of corrected temperature rise in order to deter-

mine the total heat effects. It was also pointed out [12]

that if temperature gradients occur in the calorimeter

then the relation T(t)=f[P(t)] is dependent on mutual

distribution of heat sources and temperature sensors,

and moreover it is not always enough to measure the

temperature in one of the distinguished bodies. For

this reason Zielenkiewicz and Tabaka [18–21] pro-

posed a new method of reconstruction of P(t) function

using a multipoint temperature measurement in the

calorimetric vessel.

While analyzing the course of heat effects in a

calorimeter it is necessary to distinguish many do-

mains in it. It is a great advantage of the thermal-dy-

namic analogy method that it allows one to determine

heat effects and analyze the course of thermal effects

in calorimeters with complex structures using the

n-domains method. The method comprises proce-

dures necessary to determine mathematical models of

calorimeters with a significant number of parameters.

N-domains method

The basic postulates of the multi-domains (bodies)

method are as follows. Each of the separate bodies

has a uniform temperature in its entire volume; the

temperature is a function of time t only, and the heat

capacity of the body is constant. Temperature gradi-

ents appear only in the media separating the bodies,

and the heat capacities of these media are by assump-

tion negligibly small. The amount of heat exchanged

between bodies through these media is proportional to

the difference in the temperatures of the bodies; the

proportionality constants are the appropriate heat loss

coefficients. Furthermore, a heat source or a tempera-

ture sensor may be positioned in any of the bodies.

The system of bodies is placed in a medium with a

constant temperature. The generalized heat balance

equation derived from these assumptions is:
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Equation (14) in the temperature dimension has

the form
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i≠j, j=1, 2, ..., N

The set of differential Eq. (15) are called the

general equation of dynamics, which assumptions are

sufficiently to allow the calorimeter to have different

configuration.

The following notions have been introduced in

Eq. (14): an overall coefficient of heat loss, time con-

stant of the domain, interaction coefficient, forcing

function.

The overall coefficient of heat loss Gj for each of

the domains is defined as

G Gj ij

i i j

N

=
= ≠
∑ ;

,0

j = 1, 2, ..., N (16)

This coefficient characterizes the heat exchange

between domain j and the surroundings but also be-

tween domains j and other domains.

The time constant τ j

0 of domain j is defined as

the ratio of heat capacity Cj and overall coefficient of

heat loss Gj of the domain.

τ j

0 = Cj/Gj; j = 1, 2, ..., N (17)

The time constant τ j

0 of domain j that is τ j

0, is a

measure of the thermal inertia of this domain in the

system of domains.

The interaction coefficient kij is defined as the ra-

tio of the heat loss coefficient Gij to the overall coeffi-

cient of heat loss Gj

kij = Gij/Gj; i = 1, ..., N; j = 1, 2, ..., N (18)

This is a measure of heat interaction between the

domain i and the domain j in relation to the interac-

tions between the remaining domains and surround-

ings and the domain j. The interaction coefficients af-

fect essentially the thermal inertia of the calorimeter

and allow us to establish the structure of the dynamic

model of a given calorimeter. If the value of the inter-

action coefficient kij is negligibly small, it may be as-

sumed that there is no thermal interaction between

domains i and j or, more exactly, that the thermal in-

teraction between domains i and j is small enough to

be ignored in comparison with the interaction be-
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tween domains i and j and other domains and the sur-

roundings.

Furthermore, the notion of the forcing function

fj(t) – taken from the steering theory – was introduced

into these considerations. This function is defined as

f t
G

Q t

t

j

j

j j

d

d
( )

( )
;= 1

λ
j = 1, 2, ..., N (19)

or in the dimension of temperature

f t
G

P tj

j j

j( ) ( );= 1

λ
j = 1, 2, ..., N (20)

As it results from the above considerations for

the elaboration of the dynamic model it is necessary

to calculate the heat capacities of the defined do-

mains, heat loss coefficients and to determine the

structure of the model. The elaboration of the model

allows determination of the set of heat balance equa-

tions or the set of equations of dynamics. Determina-

tion of the transmittance for such a system is equiva-

lent to the determination of a mathematical model of

the calorimeter. It is assumed to be properly deter-

mined only when the optimization and stability condi-

tions of the numerical solution are fulfilled. These

conditions require admission of value of a sampling

period which is obtained from the amplitude charac-

teristics of the calorimeter, taking into account the

noise-signal ratio. The optimal sampling period limits

the smallest value of time constants. If any number of

time constants of the calorimeter does not satisfy the

stability condition, then the new model of the system

must be worked out, decreasing the number of do-

mains and calculating new parameters. The maximum

order of the new model is limited by the number of

time constants which satisfy the stability condition.

N-body method was successfully applied to deter-

mine a mathematical model of the BMR [22, 23] calo-

rimeter as well as the UNIPAN calorimeter [24].

The advantage of this manner of elaborating mathe-

matical models of calorimeters is the determination of

system parameters as the result of the determination

of their values and relations between them and conse-

quently, the possibility to optimize the construction of

a calorimeter. Moreover, the knowledge of the struc-

ture and parameters of the calorimeter allows to dis-

tinguish in the mathematical model of parameters and

structure the ‘changeable’ and ‘unchangeable’ parts

of the calorimeter and ascribe the equations respec-

tively. Let us assume that in our experiments the ‘un-

changeable’ part of the calorimeter corresponding to

an empty calorimeter remains constant. Whereas in

the ‘changeable’ part there can occur changes in the

heat capacity Cm. The form of a set of equations deter-

mined in these conditions indicates that for various

heat capacities Cm, there is no need to change the

mathematical model of the calorimeter, however, a

change in the Cm calls only for introduction of new

data in deconvolution program. This can be extremely

useful when heat capacities of the calorimetric vessel

contents change during the experiment, e.g. in the ti-

tration process.
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